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We prcamt results for fe and mama of low-lying heavy-light mesona. Calculations were performed in the 
quenched approximation using multistate smearing functions generated from a spin& relativistic quark model 
Hamiltonian. Beta vdue~ range from 5.7 to 6.3, and light quark manses corresponding to pion mssses as law w 
300 MeV are computed at each value. We use the lP-IS charmonium splitting to set the overall scale. 

1. INTRODUCTION 

Lattice gauge calculations of heavy-light me- 
sun structure are of both theoretical and phe- 
nomenological interest.[l] One immediate goal of 
these calculations is to obtain precise quantita- 
tive results for masses, decay constants. and form 
factors in the static approximation. where the 
heavy quark propagator is repiaced by a timelike 
Wilson line. One difficulty which plagued early, 
exploratory calculations of the pseudoscalar de- 
cay constant fs was the problem of isolating the 
ground state contribution to the propagator of 
the local weak current. Because of the proximity 
of excited states and theii~sizable overlap with 
the local current, a large separation in time wrrp 
required, with an accompanying loss of statistics. 
Recent attempts to overcome this problem have 
employed nonlocal 8q operators smeared either 
over a cube[4] or wall source[5] in a fixed gauge 
or by gauge invariant methods[6.i]. By measur- 
ing the asymptotic behavior of both the smeared- 
smeared (SS) and smeared-local (SL) propaga- 
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tom, one can reduce the systematic error associ- 
ated with excited state contributions. 

Here we report results obtained using the mui- 
t&ate smearing method discussed elsewhere[8,9]. 
The present results offer a wide range of lattice 
spacings and quark masses from which an extrap 
elation to the chiral and continuum limits can be 
obtained. 

2. RELATIVISTIC QUARK MODEL 

The problem of overlap with excited states is 
reduced by using smearing functions that are 
carefully chosen to resemble the wavefunctions of 
lattice QCD. The success of a simple relativis- 
tic quark model Hamiltonian in reproducing the 
lattice wavefunctions greatly simplifies this task. 
The basic features of this model are: 
(a) the use of a relativistic kinetic term n 
(with m a constituent quark mass) for the kinetic 
piece of the Hamiltonian, and 
(b) a confining potential V(rT, which is taken to 
be the static interaction energy obtained from 
correlators of temporal Wilson lines in lattice 
&CD. 

Since the potential is directly measured on 
the lattice. the only adjustable parameter in the 
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RQM is the constituent quark mass m. After fix- 
ing m by a match to the 1s wavefunction, we 
have found good agreement with measured ex- 
cited state wavefunctions (for example, the 1P 
state). This agreement suggests that this ansatz 
accurately describes at least the valence quark 
sector of the full mesonic bound-state. 

To minimize lattice discretization and finite 
volume artifacts in the comparison of RQM and 
lattice Monte Carlo results. we have generated 
a set of lattice smearing functions by solving a 
discretized version of the relativistic Scbrodinger 
equation, on lattices of the same size as those used 
in the respective Monte Carlos. and in each case 
with the static potential determined from Wilson 
line oxrelators in the ame gauge configurations 
used to extract our quenched QCD results. 

3. MULTISTATE ANALYSIS 

Our object in this section is to outline a general 
procedure for extracting the maximum usable in- 
formation from the multistate coupling matrix: 

Cob(T) = c si%,.,w:i!.,,m 
i? 

< 0 ( Q(~.T)Q(O,T)Q+(O,O)~(~,O) (0 > (1) 

where q(Q) are light (heavy) quark operators. 
and the ‘I&, (a=1,2,...N) contain the set of or- 
thonormal smearing functions obtained from the 
RQM as described in the preceding section. From 
a set of N, decorrelated gauge configurations, we 
begin with a correpon+ng ensemble of N, statis- 
tically independent C”‘(T) matrices, from which 
a standard deviation matrix o’*(T) can be ob- 
tained directly. In addition to the smearing wave- 
functions of the relativistic potential model, the 
set {UC@} also includes typically the local source 
generating the desired heavy-light axial-vector 
matrix element for extracting fa. In the correla- 
tor matrixabove, the heavy and light quark prop- 
agators in each gauge configuration are computed 
in Coulomb gauge. As we are dealing with global 
color singlet states on each time slice (color sums 
axe suppressed) Cab is well-defined and non-zero. 

Defining state 

1 @“,T >= ~~~,.,(~Q+(O,T)q(<T) 10 > (2) 
; 

we have 

C’*(T) =< Q”,T (@,O > 

= $ CE”T <Q”JTL><TLlQ> (3) 

+O(e-EM+‘=) 

where the states 1 n > are exact eigenstates of 
the lattice Coulomb gauge transfer matrix with 
eigenvalues eeE*. The remainder term of or- 
der eTE*l+lT will of course be small at large Eu- 
clidean time, but in addition should have a small 
prefactor to the extent that our smearing func- 
tions &,!,,,(fl (a=1,2...M) do a good job in rep- 
resenting the valence quark structure of the low- 
lying states, and to the extent that mnre compli- 
cated Fock states (containing extra quark pairs, 
real gluans, etc) are not too important. 

Next, define mixing coefficients (in our case, 
they are real): 

tP” E< @p” 1 n >=< n I@’ > (4) 

Neglecting the exponential contamination of or- 
der e -EbS+,T3 we see that the multistate coupling 
matrix can be fit to an expression of the form 

CO*(T) = 5 ~“,u~,e-~“= (5) 
n=, 

Of course, we cannot hope to extract M indepen- 
dent time-dependencies with N < M smearing 
wavefunctions, so only N > M will be considered. 
Typically we shall extract the maximum informa- 
tion from the lattice data by picking N = M + 1 
(theextraoperator being the local current needed 
for the extraction of fB). 

The fit is performed by a chi-square minimiza- 
tion of 

x ~ 2 I Cab(T) - C,“==, uondncEJ 12 
eyiy 

(6) 
T=T, 

with respect to the fitting parameters {u”,, E,), 
over a fitting range T< 5 T 5 T, in Euclidean 
time. The fit is performed on an ensemble of N, 
jack-knife coupling matrices obtained by replac- 
ing each in turn of the JV, coupling matrices by 
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the average matrix and reaveragiag. We have cho- 
sen 1 ON >e &i.l(O) ] 0 >. so the parameters 
u’y, should be interpreted as lattice f-parameters 
for the ground and excited meson states, E, as 
the corresponding masses. and u0” as mixing co- 
efficients iudicating the degree of overlap of the 
exact meson states with our RQM smeared states 
1 @” >. Note that this fitting procedure automat- 
ically gives the lattice f-parameters without the 
need to divide by the square-root of the smeared- 
smeared correlator as in the usual approach. 

Once the overlaps < W ) n > have been es- 
timated by a best fit of Cab(T), a smearing op 
erator can be constructed which is guaranteed to 
contain al most one of the first d exact meson 
states, thereby removing any other exponential 
time-dependence to the emEM+lT level. Specif- 
ically, If c,,,~,..,,~, is the totally antisymmetric 
symbol in ;1[ dimensions, the smeared state 

I i+ >= b,....GM ,p I Q”* > (7) 

is guaranteed (to the extent that we have accu- 
rately extracted the mixing coefficients u”,) to 
contain only the exact meson state / .4 >. to- 
gether with contaminations from the &I + l’th 
excited state and higher. An effective mass plot 
of the usual kind can then be obtained for the 
A’th state by displaying 

1 CA(T- 1) 
m&T- 2)~ In CA(T) 

where 

C"(T)=< Q( lOC),T ( .@"',j+ > (9) 

The smeared-smeared correlator is defined in a 
similar fashion. We depict smeared-local rather 
than local-smeared carrelators since the former 
have less noise. 

4. PERTURBATIVE CORRECTIONS 
AND UNITS CONVERSION 

Several parameters must be determined before 
one can convert current-current lattice correlators 
into physical numbers. Various methods for de- 
termining these parameters exist, and the state 

of the art is still advancing. In this section, 
we present the choice of parameters used in the 
present work. The information is summarized in 
the Table 1 below. 

Table 1 
Parameters for Lattice-to-Continuum Matching 

,/3 a-‘(GeV) sn-’ Z* 
5.7 1.15(8) O.lS%(l) 0.253(4) 0.679 
5.9 1.78(9) 0.15974(6) 0.122(2) 0.694 
15.1 2.43(15) 0.15495(4) 0.080(l) O.iO2 
6.3 3.05(15) 0.15177(4) 0.062(l) 0.708 

In Table 1, the five columns are the W(3) 
gauge coupling, p, the inverse lattice spacing in 
GeV as determined from the lP-1s charmonium 
splitting[l8] where available (0 = 5.7.5.9,6.1) 
and by the p mass for p = 6.3, the critical value 
of k, the difference between K-’ for the strange 
quark and the critical value oin-‘, and finally the 
value of ZA, the perturbatively calculated renor- 
malization factor which multiplies the lattice re- 
sult. 2.4 is often taken to be 0.8. so the values 
for Za given above. which represent as much as 
a 15% reduction from this merit further explana- 
tion. 

There are two perturbative calculations which 
go into the determination of Za. They are a 
matching of the lattice regularized current to a 
continuum heavy quark effective theory current, 
and the running and matching of the latter cur- 
rent to a current in a theory with the full action 
for the heavy quark. The first of these two calcu- 
lations has been tadpole-improved by Hernandez 
and Hi11(2] following the prescription of Lepage 
and Mackenzie[ll]. See also the discussion of this 
prescription to the heavy quark effective theory 
by Claude Bernard in these proceedings[3]. It is 
this tadpole-improvement that is responsible ior 
the large change. The second partof the c&xda- 
tion has also been redone by the present authors 
to use the two-loop results of Ji and Musoli and 
Broadhurst and Grozin[l2]. but since this is not 
the origin of the largest part of the change in the 
size of 2~ we will defer discussion of the two-loop 
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calculation to another setting(U]. 
The tadpole improvement of the first of these 

two calculations using the prescription of Lepage 
and Mackenzie[ll] has two major ingredients: 
(1) A new lattice coupling QV is defined. At 
a given scale, it is similar in size to auS, a 
well-behaved perturbative coupling, although it 
is defined directly from lattice calculations us- 
ing the expectation value of the plaquette. The 
new coupling a~ is the same for all processes, 
but the scale at which it is evaluated is process- 
dependent. The scale has been determined for 
the process of interest here in reference (21. The 
coupling (ly so determined is larger than a deter- 
mined by g2 = 6/p. and it is because of this that 
2~ differs from its tree-level value (unity) more 
than the often used value of 0.8. 
(2) A reorganization of perturbation theory for 
the operator of interest, in this case, the transi- 
tion of a heavy quark to a light quark caused by 
the weak axial vector current. The motivation 
for this reorganization [ll] and the applicatiou of 
the prescription for heavy quarks on the lattice [3] 
may be found elsewhere. Here we simply give the 
final prescription we need. 

Assuming ON does the usual fitting proce- 
dure with current-current correlators (equation 
(21) in reference [15]), and that one is using the 
corresponding reduced value of the heavy quark 
wave function renormalization, there is no ad- 
ditional effect of tadpole improvement on heavy 
quark correlators. For an operator that involves 
both heavy and light iWilson) quark fields, one 
must still take into account the effect of tadpole- 
improvement of the Wilson fermion action. The 
effect is that for each Wilson fermion in an op- 
erator, one should multiply the operator by the 
ratio 

The numerator should be evaluated to the order 
in perturb&x theory as the other graphs con- 
t,ributing to 2~ were computed. In.~he present 
case, this is one-loop. The one-loop values of 
Za given above include this ratio. ‘The non- 
perturbative values for the denominator that were 
used are those given by n, in Table 1. To this or- 
der, no other corrections to the parameters com- 

ing from the lattice calculation need be applied. 

5. EXTRACTION OF EFFECTIVE 
MASSES 

To extract results for masses and decay con- 
stants we have used the set of gauge configura- 
tions and light quark propagators enumerated in 
Table 2. The light quark action we use is not 
O(a) improved. In Table 2, the four columns are 
the gauge coupling, 4. lattice size, the number of 
independent, gauge field configurations, and the 
light quark 6 values calculated for each configu- 
ration. h this section. we illustrate the quality 

Table 2 
Configurations and Light Quark Parameters P- I . 

lattice confs 
5.7 123 x 24 100 ,168, .;c65, ,161 
5.9 123 x 24 100 ,159 
5.9 1@ x 32 100 .159..158,.157, 

,156, ,154 
5.9 203 x 40 100 ,159 
6.1 243 x 48 50 .1545. ,154. ,151 
6.3 323 x 48 50 .1515, :1513; .I500 

of results obtained using the spinless relativistic 
quark model wave functions by reproducing rep- 
resentative effective mass plots from P = 6.1 and 
0 = 5.7. 

The hallmark of a pure, isolated ground state 
meson is au effective mass plot which is constant 
in time. In Figs. 1 and 2, we show our results for 
both the SS and SL local effective mass plots at 
R = 0.151, P = 6.1. The errors bars plotted are 
statistical errors obtained from single elimination 
jackknife. In each effective mass plot, the fit in- 
terval is indicated by the range over which the 
fitted value of the mass is drawn. 

The smeared-local .etTective mass reaches its 
asymptotic value around T = 3. while the 
smeared-smeared propagator is nearly asymptotic 
after T = 2. The results exhibit a single con- 
sistent plateau for both smeared-smeared and 
smeared-local propagators over a large range of T. 
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Figure 1. 0 = 6.1, K = 0.151 Smeared-Local Ef- 
fective Mass 
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Figure 2. ,/3 = 6.1,~ = 0.151 Smeared-Smeared 
Effective Mass 

In Figs. 3 and 4, we show-our results for the SS 
and SL local effective mass plots at K = 0.165, 
;3 = 5.7. 

In general. the ranges were chosen to be ap- 
proximately the same in physical units. The fit 
intervals 2-8, 3-10. 4-12, and 5-14 were used for 
the 3 values 5.7, 5.9, 6.1. and 6.3 respectively. 
These mass plots convincingly demonstrate the 
effectiveness of our smeariug method in isolating 
the ground state. 

6. MASSES AND DECAY CONSTANTS 

We are now ready to discuss our results for the 
mass and decay constant for our new 0 = 5.i, 5.9, 
6.1, and 6.3 lattices. A detailed discussion of the 

Figure 3. 4 = 5.7. k = 0.165 Smeared-Local Ef- 
fective Mass 

Figure 4. B = 5.7,~ = 0.165 Smeared-Smeared 
Effective Mass 

P = 5.9 results (including the comparison to our 
previously reported results) will be delayed to the 
next section. 

The results for the mass and decay constant 
as a functiou of K at /3 = 5.7 are presented in 
Figures 5 and 6. The values of li corresponding 
to the strange quark mass and I(< are denoted by 
vertical lines. The errors bars on the individual 
K values were determined using single elimination 
jackknife. Csiug these values aud jackknife errors, 
a linear regressiou for the decay cons&ants and 
masses at the various n values was performed. 
The values and errors of the slope and intercept 
of the fitted line can be found in Tables 3 and 4. 

Similarly, the results for the mass and decay 
constant as a function of IE at 4 = 6.1 are pre- 
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Figure 6. 0 = 5.7 Decay Constant (MeV) as a Figure 8. 0 = 6.1 Decay Constant (MeV) as a 
Function of K. Function of 6. 

sented in Figures 7 z&d 8, and the results for 
the mass and decay constant as a function of K 
at 3 = 6.3 are presented in Figures 9 and 10. 
As a - 0. a clear downward trend in f~ can he 
observed in the tabulated results. In Figure 11, 
one can see the downward trend (as the contin- 
uum limit is approached) present in the results in 
Table 3. The discussion of the systematic errors 
is deferred until the conclusions. 

7. fi = 5.9 RESULTS 

Preliminary results from a subset of the 3 = 5.9 
gauge field configurations used here have previ- 
ously been reported [lo]. In this section, we re- 
port our results with twice as many gauge field 

$--+-j 
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configurations and the new multi-state analysis 
procedure, and compare with the aforementioned 
preliminary results. 

To facilitate the comparison, we have replotted 
the preliminary results in Figure 1.2 after correct- 
ing for the reduction in 2~ and a slight increase in 
a-‘. This changes the central value for the chiral 
extrapolation of fs from 319 f ll(stat) MeV to 
287ztlO(stat) MeV. The results of the multi-state 
analysis are plotted in Figure 13. The result for 
the chiral extrapolation of fe of 268 4 14(stat) 
MeV agrees to 1.1 standard deviations, but it is 
nevertheless worthwhile to comment on some sub- 
stantial differences in the character of the results. 

One notices several things about the compar- 
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Figure 9. 0 = 6.3 Mass (Lattice Units) as a Func- 
tion of n. 
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Figure 10. fl = 6.3 Decay Constant (MeV) as a 
Function of K. 

isou: (1) the central value~of fe is reduced by 
somewhat more than one standard deviation, (2) 
the slope with respect to no is increased, {3) the 
final results have larger error bars, despite hav- 
ing twice the statistics, and (4) there is much less 
deviation from the linear fit in the final results. 

The common origin of all four of these differ- 
ences is that the new multi-state fitting proce- 
dure allows the admixture of excited states to 
vary from one jacknife subensemble to another. 
This converts a systematic error into a statistical 
error and thus the error bars are larger. Since 
the systematic error was potentially and in prac- 
tice K-dependent. this explains the deviation from 
a linear fit in the preliminary results. as well as 
the change in the central value of the slope. The 

Table 3 
Chirally Extrapolated Masses and Decay Con- 
stants 

B mass(a-‘) fs(MeV) 
5.i 0.758i 0.010 292114 
5.9 0.645 3~0.008 268f 14 
6.1 0.545 fO.O1l 223f 21 
6.3 0.502 f 0.007 232i 14 

Table 4 
Slopes with Respect to K-I of Masses and Decay 
Constants 

5!i O~~~bTZI4 %T2 

5.9 0.317ztO.053 367f94 
6.1 0.448 f 0.083 603 f 173 
6.3 0.35iiO.143 597f 298 

new multi-state analysis eliminates one source of 
systematic error and replaces it with an increased 
statistical uncertainty in the results. The method 
is also more powerful in that it uses the full multi- 
state correlator at each time-slice and for each 
jackknife subensemble to determine the best fit 
values. 

350 
325 
300 
275 
250 
225 
200 
175 
150 

0.2 0.4 0.6 0.8 

Figure 11. Decay constants (MeV) as a function 
of lattice spacing (GeV-I) 
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Figure I?. Previous 0 = 5.9 results for Decay 
Constant (1MeV) YS. ti. 
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Figure 13. Present p = 5.9 results for Decay Con- 
stant (MeV) vs. n. 

8. CONCLIJSIONS- 

We have presented results for the decay uzm- 
stant fa and for masses of low-lying heavy-light 
states in the static approximation. The analysis 
procedure introduces several improvements over 
previous smearing methods. First, the success 
of the RQM in reproducing the measured lattice 
wave functions is exploited by using the RQM to 
construct not only an accurate ground state wave 
iunction. but also a set oforthonarmal excited 
state smearing functions. Second, the ,$ mini- 
mization procedure described in Section 3~makes 
full use of the information contained in the ma- 
trix of smeared-smeared and smeared-local cor- 
relators. including both ground state and excited 

state smearing functions at each end. Finally, our 
method provides much greater control over sys- 
tematic errors from higher state contamination. 
because of the fact that t,he source smearing func- 
tions are tuned directly to the lattice wave func- 
tions, without regard to the behavior of the effec- 
tive mass plots. The appearance of long plateaus 
in the SS and SL plots at the same value of ef- 
fective mass is thus strong evidence that the sys- 
tematic error from higher states has been largely 
eliminated. Additional evidence for this assertion 
has been obtained by comparing the results of a 
multistate calculation with &f = 2 intermediate 
states to one with M = 4. The results for the 
ground state mass and decay constant show very 
little change between the ?-state and 4-state fits 
(always less than 5 of the statistical error). 

Table 5 
Comparison of B. and B. Masses and Decay Con- 

5.9 69(11) 1.17(4) 

The results reported here only include statisti- 
cal errors, the full analysis of the systematic er- 
rors will be reported elsewhere 1131. However all 
of our results are consistent with the conclusion 
that systematic errors from higher states are neg- 
ligible compared to our statistical errors for the 
time interval used here. We have also studied 
the systematic errors associated with finite vol- 
ume and extrapolation to )(c for the light quarks. 
As an example of the size of these errors, we es- 
timate that for tlte j3 = 6.3 fe result in Table 3, 
the finite volume error is 4 Mev and the I(~ er- 
ror is 8 MeV. The ~~ error represents our worse 
case and can be reduced by at least B factor of 
two when the smearing functions are properly op- 
timized. Thus, we expect to be able to improve 
the accuracy of the present results by using larger 
ensembles. This would not be the case for previ- 
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ously used smearing methods, which were domi- 
nated by systematic errors. 

In addition to the overall scale uncertainty in 
the quenched approximation, there are two other 
sources of systematic uncertainty in our results 
for fe, Use of the original Wilson action for the 
light quarks implies lattice spacing corrections in 
O(a) and the large one loop renormalization for 
the axial current suggests that the two loop cor- 
rectiou may be sizable. In fact. one prominent 
feature of our results for ffr at the four /?-values 
studied is a rather strong dependence on the lat- 
tice spacing a (c.f. Figure 11 and Table 3). 

In Table 5 we present our preliminary results 
for the B. - B, mass difference and for the ra- 
tio of decay constants for the B. and B,. We 
see little a dependence in either of these quan- 
tities. In particular. the systematic uncertainty 
due to the large perturbative renormalization of 
the axial current cancels for the ratio of decay 
constants. For both these physical quantities the 
extrapolation to the continuum limit (a = 0) is 
unproblematic. 
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